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Abstract—The proliferation of new online Internet services
has substantially increased the energy consumption in wired
networks, which has become a critical issue for Internet Service
Providers. In this paper, we target the network-wide, energy-
saving problem by leveraging speed scaling as the energy-saving
strategy. We propose a distributed routing scheme–HDEER–
to improve network energy efficiency in a distributed manner
without significantly compromising traffic delay. HDEER is a
two-stage routing scheme where a simple distributed multi-path
finding algorithm is firstly performed to guarantee loop-free
routing, and then a distributed routing algorithm is executed
for energy-efficient routing in each node among the multiple
loop-free paths. We conduct extensive experiments on the NS3
simulator and simulations with real network topologies in dif-
ferent scales under different traffic scenarios. Experiment results
show that HDEER can reduce network energy consumption with
a fair tradeoff between network energy consumption and traffic
delay.

I. INTRODUCTION

THE substantial power consumed by a network has be-
come a critical issue for Internet Service Providers (ISPs).

It has been reported that the total energy used by the Infor-
mation and Communication Technology is responsible for a
significant fraction of the world total electricity consumption,
ranging between 2% and 10% [1]. With the proliferation of
new Internet services, such as social networking and cloud
computing, this proportion has increased rapidly in recent
years [1]. The tremendous energy consumption of large-scale
networks will become a stumbling block to their further
developments unless energy efficiencies can be significantly
improved [2].

A great deal of research has been carried out for network
energy efficiency based on two mechanisms: speed scaling and
power-down. These mechanisms are considered to be basic
device-level energy saving approaches and have already been
applied in industry [3], [4]. However, without coordinating
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with other devices, an energy-efficient device in a network can
only make local decisions, which may be far from the global
optimum, leading to limited network-wide energy savings.
Therefore, researchers have started to propose network-level
energy saving methods based on device-level mechanisms
[5], [6], [7], [8], [9]. These network-wide approaches usually
assume some given global traffic matrices in a target network
and design traffic-shaping strategies to route the traffic flows.
However, global traffic matrices are not easy to obtain, even in
a small-scale network [10]. Moreover, most of the approaches
are centralized approaches, whereby global information needs
to be gathered, decisions are made by a central controller, and
then disseminated to network nodes. This centralized model
produces many scalability- and vulnerability-related issues
when being applied to production networks [11]. As a result, a
decentralized approach is a more scalable and flexible choice
to implement and apply to real networks.

When designing a new network protocol or applying a new
routing scheme, it is very important for an ISP to consider
traffic delays [11]. Unfortunately, many existing proposals
for energy savings have failed to take reduced traffic delay
as a design goal. As a result, although considerable energy
savings can be achieved, the traffic delays may be dramatically
increased, which consequently leads to very poor user experi-
ence. A good energy-efficient design should be able to achieve
an optimal balance between energy efficiency and traffic delay.

Motivation. In this paper, our objective is to obtain in-
creased network-wide energy efficiency while considering traf-
fic delays. A decentralized network routing scheme is devel-
oped that simultaneously possesses the following properties:

• High scalability: With the scale of networks continuously
growing, compared with centralized strategies, a decen-
tralized scheme is a more scalable and flexible choice.
Specifically, the design needs no centralized controllers,
thus avoids a single point of failure and brings high
scalability in its implementation.

• Requires no real-time global traffic matrices: The route
computation process in the proposed scheme should not
require global traffic matrix from the network. Each node
only needs to continuously monitor and react according
to the real-time traffic loads of the links attached to its
own, which is very easy to implement.

• Traffic delay: The proposed scheme takes both energy
efficiency and traffic delay as design considerations.

To this end, we propose HDEER, a Hop-by-hop Distributed
Energy-Efficient Routing Scheme. With HDEER, the traffic
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destined to each node is routed through multiple paths in
a Directed Acyclic Graph (DAG) generated for the node.
The traffic injected in each node will be distributed among
these loop-free paths, and optimality in terms of both energy
consumption and traffic delay can be achieved. HDEER is a
fully distributed scheme. It does not need to know the traffic
matrix beforehand. Each node only needs to know the periodic
updating traffic of its own, which can be easily obtained by
monitoring the traffic of its own adjacent links.

Main Contributions. Our main contributions can be sum-
marized as follows:
(i) We provide a bi-objective optimization formulation to

address the problem of optimizing both energy consumption
and traffic delay. We show that good trade-offs between the
two objectives can be achieved by adopting Pareto optimal
solutions.
(ii) While targeting the network energy-efficient routing

problem from a distributed perspective, we observe that it
will make the issue easier to settle if we separately consider
loop-free routing and optimal traffic allocation. Thus we
divide the distributed energy-efficient routing problem into two
subproblems and then propose a two-stage distributed routing
scheme (HDEER) to solve them accordingly.
(iii) We propose two Distributed, Loop-free, Multi-path

Finding Algorithms (D LoopFree and D LoopFree-TA) for
each node to guarantee distributed loop-free routing. We
perform a theoretical analysis of the loop-freeness and con-
nectivity of the generated DAGs.
(iv) We develop two Distributed Routing Algorithms

(D Routing-S and D Routing-D) for each node to distribute
the traffic to the next-hop nodes according to the loads on
current node’s egress links in these loop-free paths. Using
the proposed algorithms, global optimal solutions for the bi-
objective optimization can be obtained.
(v) We conduct comprehensive experiments with NS3 sim-

ulators to evaluate the performance of HDEER in terms of
energy savings, traffic delay, and convergence properties using
real network topologies at different scales under different
traffic scenarios (generated traffic and real traffic traces).

The remainder of this paper is organized as follows: Sec-
tion II states the problem and provides the bi-objective opti-
mization model. Section III describes the distributed routing
scheme whereby algorithms for both DAG generation and
traffic allocation are developed. Section IV discusses the
implementation details of the proposed scheme. Section V
presents the experimental results for the performance evalu-
ation. Section VI summarizes related work, and Section VII
concludes the paper.

II. PROBLEM STATEMENT

In this section, we first state the network model. Then, we
define the network optimization problem of simultaneously op-
timizing the total energy consumption by the network elements
and the total delay experienced by the traffic.

A. Network Model
We model a communication network topology by a connect-

ed directed graph G = (V,E), where V represents the set of

nodes (routers or switches) in the network and E represents the
set of bi-directional links (connections) between these nodes
in V . Each node vi ∈ V is assigned an index i. Each link
(i, j) in the set E has a capacity CAij . Note that the link
(i, j), which represents a directed connection from node vi to
node vj , is not identical to link (j, i).

We adopt the network model provided by Gallager in [11],
and restate it for the sake of completeness. For every flow,
traffic flow is injected into the network at the source node vi
with the expected rate rij . This traffic has to be routed to the
sink node vj . We assume that fractional routing is permitted,
which translates into the packets belonging to the same flow
may be split among multiple paths [12] (note that the packet
reordering problem has been widely studied [13] and will not
be discussed here). The routing variable φijk is the fraction of
the total traffic in node vi that is destined for node vj via link
(i, k). This value is restricted to be nonnegative. Intuitively,
if node vk is not a neighbor of node vi or if i equals j, φijk
should be zero. Additionally, we have the following constraint:∑

k∈V φ
i
jk = 1.

We denote the total expected traffic in node vi that is
destined for node vj by tij . Evidently, tij consists of the total
traffic injected at node vi and the total traffic passing through
node vi and being injected at other nodes:

tij = rij +
∑

(k,i)∈E

tkj × φkji (1)

The above equation implicitly restricts the flow conservation
at each node. Now, let xik denote the total traffic on link (i, k),
it satisfies xik =

∑
j∈V tij × φijk. We assume that the traffic

on each link can never exceed the corresponding link capacity;
therefore, 0 ≤ xik ≤ CAik.

Clearly, a certain configuration of the φ-value will result
in a unique distribution of traffic t in the network. We study
how to choose a proper φijk in each node with the objective of
energy efficiency without a significant performance sacrifice.

B. Bi-objective Optimization

We evaluate the network performance using two metrics:
energy consumption and traffic delay. We first state these
two metrics, and then, a bi-objective optimization problem is
proposed to simultaneously minimize these two metrics.

1) Energy Consumption and Traffic Delay: We consider
using speed scaling as the architectural support to obtain
energy savings. Let fik(xik) denote the energy consumption
function of network links, which means the energy consumed
by link (i, k) when transmitting xik units of traffic. Normally,
network devices can be designed so that slower operation
speeds use lower power supply [3], [9], [14]. The power
consumed by such a variable-speed device is a convex function
of its execution speed, with the exact form dependent on the
details of the technology. Thus fik(xik) is assumed to be
a convex function of link transmission speed. Note that the
function includes the energy cost of the link and other related
network components for transmitting packets. Let FT denote
the total energy consumption of the entire network, which
satisfies FT =

∑
(i,k)∈E fik(xik).
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Assume that delay is a function of the traffic load of the
link. We denote the delay from transmitting xik units of traffic
on link (i, k) by dik(xik). Similarly, we denote the total traffic
delay of the entire network by DT , DT =

∑
(i,k)∈E dik(xik).

We assume that dik(xik) is increasing and convex in xik,
which is consistent with most wired data networks [11], [15].
Notice that the delay includes the time for processing, queuing,
propagation, and transmission. In some applications where the
content of the packets (the payload part of the packets) needs
to be processed (e.g. encryption/decryption, and some content
security related applications), this causes another part of delay
(as well as energy consumption) by the processing elements
and memories. This part of delay (and energy consumption)
depends on the speeds and other architectural features of the
processing cores and memories. This part of delay (and energy
consumption) is not considered in this model.

2) Bi-Objective: In this work, we optimize FT and DT by
adopting an economy-theoretical model. In general, bargaining
among multiple objectives is a game played by a decision
maker, who makes decisions among multiple objectives in
the feasible design space X based on his/her preferences for
these objectives [16]. Consider a multi-objective optimiza-
tion problem P (F,X) with k objectives, where F (x) =
[F1(x), F2(x), . . . , Fk(x)]T , ∀x ∈ X , and Fi : X → R, ∀i ∈
[1, k]. The problem P (F,X) can be formulated as follows:

minx∈X F (x) (2)

Intuitively, the optimization goal of the problem P (F,X)
is to obtain the corresponding Pareto optimal point when the
preferences for these k objectives are predetermined.

Using the weighted sum method [17], we can combine these
two objectives using scalarization. We assign a weight to each
objective to represent the preference of the objective. By doing
this, we obtain a single objective CT to define the performance
of the network.

CT = w1 × FT + w2 ×DT (3)

When w1 and w2 are the corresponding preferences, they
satisfy w1 + w2 = 1, w1, w2 ∈ [0, 1]. A pair (w1, w2)
corresponds to a Pareto optimal point. The value of (w1, w2)
serves as a guideline to the optimal trade-off between energy
savings and traffic delays.

Finally, we propose the following Bi-objective Optimization
Formulation (BOF) to address the routing problem. We will
find a set of φ-values to minimize the objective function. Note
that we seek the Pareto optimal points for minimizing FT and
DT by minimizing the single objective CT .

(BOF) min CT

s.t. tij = rij +
∑

(k,i)∈E

tkj × φkji ∀i, j (flow conservation)

∑

j∈V

tij × φijk ≤ CAik ∀i, k (QoS restriction)

∑

(i,k)∈E

φijk = 1, ∀i, j (variable restriction)

φijk ∈ [0, 1], ∀i, j (variable restriction)

Start D_LoopFree D_Routing

Repeat at the beginning 
of every time window

Fig. 1. An overview of HDEER.

The above optimization problem falls into a classical
quadratic objective problem. It can be solved using an op-
timization solver in a centralized manner. Nevertheless, these
centralized optimization solvers need the topology information
of the entire network and a traffic matrix as the input for
computation. When the size of the network scales up, the
time spent on the computation will not be tolerable in realistic
network operation. In addition, centralized methods rely highly
on a central controller, which can be used with SDN, to
manage and schedule the network devices. This puts pressure
on the central controller and makes the central controller a
sensible vulnerability that can affect network stability. Thus,
it is of great significance to address such a bi-objective routing
problem in a distributed manner. To this end, we propose a
completely distributed routing scheme to address the problem
in the following section.

III. DISTRIBUTED LOOP-FREE ROUTING SCHEME

In this section, we develop a energy efficient routing
scheme by deriving optimal routing conditions for minimum
CT . Based on these optimal routing conditions, we propose
a Hop-by-hop Distributed Energy-Efficient Routing Scheme
(HDEER). HDEER consists of two stages. We first pro-
vide a Distributed Loop-free Multi-path Finding Algorithm
(D LoopFree) to guarantee loop-free routing. Then we pro-
pose an optimal Distributed Routing Algorithm (D Routing)
for each node to guide the traffic distribution on these multiple
loop-free paths built by D LoopFree.

A. Overview of HDEER
The proposed scheme is illustrated in Figure 1. At the

beginning, the D LoopFree algorithm is called to compute
a DAG for each sink node. Each node in the network only
needs to send traffic to its neighbors according to the DAG.
Consequently, loop-freeness can be guaranteed. When a new
time window starts, the D Routing process will be called to
distribute traffic among its neighbors at each node. Then, each
node adjusts its processing speed according to its real-time
traffic load. Both D LoopFree and D Routing operate in a
totally distributed manner.

B. Distributed Loop-free Multi-path Finding (D LoopFree)
As mentioned in Section II, we perform the distributed

routing by letting each node in the network choose its own
φ-value independently. Once the routing variable has been
selected, the corresponding amount of traffic will be routed
through the corresponding output link. This process happens
at every node in the network simultaneously, thus unless done
carefully, loops are likely to occur. Paths with loops will
bring about the following consequences: (1) The distributed
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(a) (b) (c) (d)

Fig. 2. Generating GEN G(0 ). Note that the root node is v0. Each node vi is associated with a two-tuple (i, h0
i ). (a) The original graph in which all nodes

are assigned an index, while the height of each node is initialized to ‘-’; (b) generating the shortest path tree; (c) executing the first stage of link addition; (d)
executing the second stage of link addition.

routing algorithm fails to converge, (2) Additional energy and
delay costs are produced due to the cumulative feature of the
total cost function. All these situations should be avoided.
Therefore, we must carefully choose the next hops for each
node to provide a guarantee of loop-free routing.

It is not difficult to see that for a particular destination vt,
all multiple loop-free routing paths originating from every
node in the network to the destination vt form a DAG .
Leveraging this feature, we find the next hop at each node
for each destination, which maintains the loop-free property
by generating a DAG for each destination, including all nodes
in the network topology.

In this work, we first devise a “height-based” algorithm
to generate a connected graph GEN G(t) from G(V ,E )
for each destination node vt. Then, we prove that each
GEN G(t) is one of the largest DAGs of G. The main
principle behind our algorithm is to distinguish all the nodes
with regard to each destination vt by labeling them with
different heights. If network traffic always flows from higher
nodes to lower nodes based on their heights, loops will never
be generated. The algorithm takes the graph of the network and
the destination node vt as the input. Then, it returns a DAG ,
denoted as GEN G(t), corresponding to vt after performing
the three steps listed below. Now, we describe these three steps
in detail.

Step 1: Generating a shortest path tree. We first build
a DAG that can cover all the nodes in the network. We
construct a shortest path tree based on the original graph G
with root vt as the destination to form a DAG . Note that every
directed graph with no directed cycles is a DAG . We select the
shortest path tree because it has the following advantages: (1)
A shortest path tree based on the original graph G covers all
the nodes in G, (2) A shortest path tree can be constructed in
a distributed manner using the distributed Dijkstra algorithm.

Step 2: Labeling all nodes with different heights. For each
destination node vt, we label all the nodes in the corresponding
DAG with integer values. For the sake of brevity, we denote
the height of node vi by ht

i. First, we label the destination
node vt with 0. Then, we label each node with its node
height (distance to vt) in the shortest path tree. This process
terminates when all nodes in the DAG have been labeled.

Nevertheless, only considering the shortest path routing will
not produce an energy-efficient scheme because some paths
that exhibit substantial energy savings may be neglected [12].
We extend the DAG with the following:

Step 3: Adding alternative links. For each destination
node vt, we extend the corresponding DAG by performing

the following processes: (1) We find all the links (i, j), such
that, ht

i > ht
j , then we add the link (i, j) to the DAG, (2) We

find all the links (i, j), such that, ht
i = ht

j ∧ i > j, then we
add the link (i, j) to the DAG.

Each node generates DAGs in a distributed way. The above
process is only dependent on the network topology, and in
particular, it is independent on any traffic load distribution
in the network. Thus, every node can execute the process in
a distributed manner. Also, it does not need to be executed
often but only needs to be executed only when the scheme
starts. Therefore, the entire process of our loop-free multi-
path finding algorithm can be realized in a distributed manner.
The entire process is illustrated in Figure 2. Assume that the
original graph is connected and that it does not include parallel
links. We now introduce the following theorem on the features
of the DAG generated by our algorithm.

Theorem 1. For every destination node vt, GEN G(t) is the
largest DAG of links destined for node vt, with |E|/2 links.

Proof: Consider two arbitrary nodes vi and vj in
GEN G(t).

Case 1: vi and vj are adjacent. There will be exactly one
link reserved between these two nodes either according to the
height order (ht

i ̸= ht
j) or according to the index order (ht

i =
ht
j). Thus, one of the bi-directional links between two arbitrary

adjacent nodes will be reserved to build GEN G(t).
Case 2: vi and vj are not adjacent. In this case, no links

will be reserved in GEN G(t) according to the algorithm.
Thus, this case contributes no links.

In summary, GEN G(t) involves |E|/2 links in any case.
Suppose that there is a DAG∗(t) that consists of more than

|E|/2 links. According to the Pigeonhole Principle, there must
be more than one link that exists between at least one pair
of neighbor nodes, that is, at least one pair of bi-directional
links exists, which contradicts the assumption that DAG∗(t)
is a DAG. Therefore, such a DAG∗(t) does not exist, thus
GEN G(t) is the maximal DAGs destined for node vt.

C. Distributed Routing (D Routing)

In this section, we first discuss our sufficient and necessary
conditions for minimizing CT . Then a distributed routing
algorithm (D Routing) based on the conditions is proposed.
With the network model provided in this paper, a given input
traffic set r and a certain configuration of the φ-value will
result in a unique distribution of traffic t in the network.
Thus before going into detail, we first calculate the partial
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derivatives of the objective CT with respect to the input
traffic flow rij and the routing variable φijk. For convenience,
we denote the total cost relevant to link (i, k) by cik(xik);
thus, CT =

∑
(i,k)∈E cik(xik). Accordingly, we denote the

marginal cost of link (i, k) by c′ik(xik). Note that c′ik(xik)
is the partial derivative of CT with respect to xik, i.e.,
c′ik(xik) = ∂CT

∂xik
. Assume a small increment εr in the input

rij . For each adjacent node k, it will cause an increment cost
on link (i, k) of εr · φijk · c′ik(xik). If node k is not the
destination node, the increment traffic εr will cause new input
traffic in node k. This corresponding increment cost will be
εr · φijk · ∂CT

∂rkj
. Summing over all adjacent nodes k, we have

∂CT

∂rij
=

∑

(i,k)∈E

φijk × [c′ik(ik) +
∂CT

∂rkj
] (4)

An increment εφ in φijk causes an increment εφ · tij in the
traffic on link (i, k). If k is not the destination node, this
increment will cause an additional εφ · tij to the traffic at k
destined for j, thus we have

∂CT

∂φijk
= tij × [c′ik(ik) +

∂CT

∂rkj
] (5)

To minimize the objective, a widely used method is to
find a stationary point for CT with respect to variations in
φ. For the constraints

∑
(i,k)∈E φ

i
jk = 1 and φijk ≥ 0, we

have
∂(

∑
(i,k)∈E φi

jk−1)

∂φi
jk

= 1 and ∂φi
jk

∂φi
jk

= 1. With positive
Kuhn-Karush-Tucker (KKT) multipliers λij(i, j ∈ V ) and
λ

′

ij(i, j ∈ V ) introduced, to minimize CT , the expressions
∂CT

∂φi
jk
−λij −λ

′

ij = 0 and λ
′

ijφ
i
jk = 0 should be satisfied. It is

easy to verify that if φijk = 0, we have λ
′

ij ≥ 0; If φijk > 0,
we have λ

′

ij = 0. Thus, we have

Theorem 2 ([11]). The necessary condition for a minimum of
CT with respect to φ for all i ̸= j and link (i, j) ∈ E is

∂CT

∂φijk

{
= λij φijk > 0
≥ λij φijk = 0.

(6)

Theorem 2 is not sufficient because CT can have inflection
points as a function of φ. Considering Equation (5), the value
of ∂CT

∂φi
jk

is greatly affected by the injected traffic tij . It can be
verified that Equation (6) would be sufficient to minimize CT

if tij is removed. Please refer to [11] for detailed proof.

Theorem 3 ([11]). The sufficient condition for a minimum of
CT with respect to φ for all i ̸= j and link (i, j) ∈ E is

c′ik(xik) +
∂CT

∂rkj
≥ ∂CT

∂rij
(7)

In this paper, we extend Theorem 2 and Theorem 3 to fit
our energy efficient routing problem and propose a new routing
scheme. Notice that Gallager also derived a minimum-delay
routing algorithm based on Theorem 2 and Theorem 3 in [11].
The main differences are as follows: (1) While Gallager’s work
only focuses on minimizing the overall traffic delay, our work
simultaneously optimizes both energy consumption and traffic
delay; (2) Gallager’s work establishes routing paths from

Algorithm 1 D Routing(κ)
Input: (φij)κ−1

Output: (φij)κ

1: kmin = argminvk∈Si
j
{Dk

j + wik}.
2: for all vk ∈ Si

j do
3: δijk ← (Dk

j + wik)− (Dkmin
j + wikmin).

4: end for
5: for all vk ∈ Si

j do
6: if k == kmin then
7: (φijk)

κ ← φijk +
∑

k ̸=kmin
δijk × γ.

8: else
9: (φijk)

κ ← φijk − δijk × γ.
10: end if
11: end for

sources to destinations every instant to guarantee loop-free
routing, we develop a different way to guarantee that all the
packets go though loop-free paths. That is we develop a path
finding algorithm (D LoopFree) such that loop-free paths are
computed at the beginning of the scheme. Then, an algorithm
is provided to guide traffic distribution among these loop-free
paths to reduce energy consumption. In this way, our method
establishes routing paths only once, which reduces the path
establishment time; Most importantly, (3) while Gallager’s
work only applies to quasi-static traffic scenario [11], our work
can be easily extended for dynamic situation.

We now seek a routing algorithm to minimize the objective
CT by exploiting Theorem 2 and Theorem 3. Assume that Si

j

is the the neighbor set of node vi in the GEN G(j ) built in
our loop-free path-finding algorithm. According to Theorem 2
and Theorem 3, to accomplish the routing goal, each node vi
must incrementally decrease the value φijk of links for which
the sum of c′ik(xik)+

∂CT

∂rij
is large. As a result, we put forward

an algorithm (D Routing) to modify the φ-value iteratively.
Note that D Routing only routes traffic on the DAG between
the current node and the destination, thus is more efficient
than Gallager’s work. For the sake of simplicity, we denote
the marginal distance of node vi to node vj by Di

j = ∂CT

∂rij
and, accordingly, denote the marginal cost of link (i, k) by
wik = c′ik(xik).

In each iteration κ, each node vi takes the routing variables
for all vk ∈ Si

j as input, which are denoted by (φij)
κ−1. When

this iteration finishes, the node returns the routing variables
that have been updated, which are denoted by (φij)

κ. For
simplicity, we refer to the κth iteration as D Routing(κ). For
the destination node vj , the process of D Routing(κ) in each
node vi is described as follows:

1) Collect Dk
j and wik from node vk, ∀vk ∈ Si

j , then
calculate Di

j according to Equation (4) and send this
value to outgoing links in GEN G(j ). Note that if
i = j, then Di

j = 0.
2) Mark the node with the minimum value of (Dk

j +wik)
as kmin, then calculate δijk = (Dk

j + wik) − (Dkmin
j +

wikmin), ∀vk ∈ Si
j ∧ k ̸= kmin.

3) Calculate (φij)
κ for every node vk ∈ Si

j . If k = kmin,
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(φijk)
κ = (φijk)

κ−1 +
∑

k ̸=kmin
δijk × γ. Else, (φijk)

κ =
(φijk)

κ−1 − δijk × γ.
Note that γ is the iteration step size. D Routing(κ) can

also be seen in Algorithm 1. After an iteration, each node
vi reallocates the traffic among its output links. When this
iterative process terminates, the final set of φ-value is the
solution of D Routing, which is denoted by (φij)

∗.
Next, we discuss the convergence property of the distributed

iterative algorithm. We denote the cost of the entire network
in the current time by CT , and we denote the cost after an
iteration κ by (CT )κ. Assume that the value of γ is sufficiently
small. The following theorem demonstrates the convergence
property of this algorithm:

Theorem 4. After each iteration κ, for all ϵ > 0, if 0 < γ < ϵ
is small enough, then (CT )κ − (CT )κ−1 ≤ 0.

Theorem 4 was firstly proved by Gallager [11]. Note that
Theorem 4 is based on the assumption that γ is sufficiently
small. The value of γ plays an important role in the conver-
gence. A small γ guarantees the convergence of the algorithm
but leads to slow convergence. When we increase the value of
γ, the convergence speed increases as well as the risk that the
algorithm will not converge. We will discuss the selection of
γ in Section IV by considering various traffic patterns, and
performing simulations to address this issue in Section V.
Because the marginal distance Di

j is computed recursively in
Equation (4), the time complexity for one iteration is O(D).
Note that D is the diameter of the network topology.

D. Discussion
1) Traffic-aware: As stated above, the construction of the

DAG in D LoopFree only requires information about the
network topology. Because no traffic information is consid-
ered, D LoopFree is not traffic-aware. Consider a topology
with three nodes in Figure 3(a), where each node pair has a
bi-directional link. For the destination node vt, D LoopFree
will first generate a shortest path tree to cover two other
nodes vi and vj by reserving link (i, t) and link (j, t). Let
us assume that vi has a larger index than node vj . Noticing
that node vi and vj have the same heights in the shortest
path tree, D LoopFree will reserve the link from node vi to
node vj because node vi has a larger index. After running
D LoopFree, node vi will have two paths to the destination
node vt: i → t and i → j → t. Node vj has only one
path: j → t. Consider the case whereby node vj has M
units of demand to send to node vj , while node vi has no
demands to send. Then, node vj will route all its demands
to the destination node via path j → t (in Figure 3(b)). The
total cost is CT = c(M). However, if we modify the DAG
generated by D LoopFree by replacing link (i, j) with link
(j, i), then node vj will have two paths to destination node
vj : j → t and j → i→ t (in Figure 3(c)). Assuming that ψ is
the proportion of the total demands routed via j → t, then the
total cost is (CT )′ = c(ψM)+ 2c((1−ψ)M). In some cases,
for instance, if c(x) = α(x)β and α > 0,β > 1, we have that
CT > (CT )′. This means that if we modify the DAG , we can
obtain a better solution. Specifically, the DAG generated by

(a) (b) (c)
Fig. 3. (a) a topology; (b) i > j, generate GEN G(t); (c) modify GEN G(t)
by replacing link (i,j) with link (j,i).

D LoopFree is not always optimal because it is not traffic-
aware. To address this issue, we also provide an enhanced
version of D LoopFree: D LoopFree-TA. This version takes
the traffic in different nodes into consideration by reserving
links according to the traffic status in each node and not the
node index. One possible alternative solution is to replace the
criteria of reversing links from the node index by the value of
marginal distances.

2) Stability: The traffic allocation algorithm D Routing
adjusts the traffic distribution iteratively to minimize the ob-
jective. Specifically, at each iteration, a router changes its own
routing variables. Until the algorithm terminates, it updates the
routing variables iteratively after a short time interval, denoted
by δt . Now we discuss the network stability of this algorithm.
We focus on a single flow (e.g., a TCP connection between
two hosts). Consider a situation where the flow experiences
more than one iteration of HDEER during its lifetime. Since
in every iteration the route for the flow may change, packets
from the same flow may follow different paths, leading to
routing instability issue. To address the path change issue of
flows, we provide two auxiliary policies as follows. Firstly, as
a large proportion (approximately 90%) of flows on Internet
are typically short flows with the flow lifetime (time used for
completing the transmission of all the packets from this flow),
denoted by md, which is less than 10ms [18], [19] in general.
Thus setting δt several times larger than md (e.g., δt = 5md)
would help overcome the above issue. The principle is to
guarantee that most of the flows will experience no more than
one iteration. Secondly, we keep the paths of all flows remain
unchanged during their lifetimes. As the time interval affected
by this policy is at most md in most cases, which is only a
fraction of δt, the policy is feasible.

IV. IMPLEMENTATION DETAILS

In this section, we discuss the details of the implementa-
tion of our distributed routing scheme in realistic networks.
Fractional routing is assumed in the scheme, where the flow
may be split among multiple paths [12]. The scheme can
be conveniently implemented in an Autonomous System of
network (AS). Speed-scaling mechanism is provided as an
architectural support, thus we assume that the routers in the
network are equipped with the Adaptive Link Rate (ALR) [3].
To enable an efficient hardware implementation, we should
first address the following issues: (1) How do we build the
Routing Information Base (RIB) in each router? (2) How do
we implement multipath routing in the network? and (3) How
do we adapt our algorithm to both static and dynamic traffic
scenarios? We answer these questions in the following.
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Fig. 4. The RIB in router A, where Dest means the Network Id of the
destination subnet, NHE means the Next Hop Efficient and φ means the
corresponding Routing Variable.

A. RIB
A RIB with hop-by-hop routing involves at least three

information fields: (1) the Network Id of the destination
subnet; (2) the Next Hops to which the packet is to be sent on
the way to its final destination; and (3) the Cost of the path
through which the packet is to be sent. Note that we leave the
first field the same as usual RIB. We replace the Next Hops
with Next Hops Efficient in our scheme, which is determined
by the D LoopFree algorithm. Besides, we replace the last
one with the Routing Variable, which is defined in Section
II. Specifically, assume that RIBi is the routing table of node
vi and that routing entry ribijk is a record in RIBi. Note that
vk ∈ Si

j . Then the third field of ribijk is φijk, and

ribijk ∼ (j, k,φijk)

means that the proportion of traffic routed from node vi
to destination node vj via neighboring node vk is φijk. An
example of RIB is illustrated in Figure 4.

B. Traffic Scenarios
The traffic scenarios considered in our paper involves static

traffic scenario and dynamic traffic scenario. The static traffic
scenario refers to the situation where traffic demands in the
nodes are considered to be constant. It happens when a day
is partitioned into several time intervals according to the
traffic volume. During each time interval, routing variables
are computed according to constant peak traffic demands in
the nodes. The dynamic traffic scenario refers to the situation
where traffic demand in each node changes over time. The
routing variables should be adjusted accordingly thus to react
to the traffic fluctuation. Link traffic of each interface is mea-
sured periodically using the widely applied Simple Network
Manager Protocol (SNMP) or other similar protocols.

1) Static Traffic Scenario: In this scenario, each node will
first run D LoopFree to find the next-hop set Si

j for each
sink node vj , then run D Routing iteratively to modify the
routing variables. Because the updating stage is iterative, we
set a threshold θ to control the iteration. When the average
distance between vector (φij)κ and (φij)

κ−1 becomes no more
than θ, node vi will stop updating its routing variables. Then, it
will notify its neighbors with its latest state and stop sending
update information to its neighbors. When all nodes in the
network stop updating, the algorithm terminates. This process
is depicted in Algorithm 2.

Identifying the next-hop sets for each destination node in
our algorithm is similar to the next-hop search process in the
Routing Information Protocol (RIP). The main difference is
that we use the D LoopFree proposed above rather than the

Algorithm 2 Routing in a Static Traffic Scenario
1: for all vi ∈ V do
2: Run D LoopFree to find the next-hop set Si

j for each
sink node vj .

3: ψ ← Inf , κ← 0.
4: while ψ > θ do
5: κ← κ+ 1.
6: Run D Routing(κ) to modify φij .

7: ψ ←
∑

vk∈Si
j

|(φi
jk)

κ−1−(φi
jk)

κ|
|Si

j |
.

8: end while
9: (φij)

∗ ← (φijk)
κ.

10: Route traffic with the fixed (φij)
∗.

11: end for

distributed Bellman-Ford algorithm of the RIP to compute
the next hops. Multi-path routing is allowed in our scheme.
Because RFC2991 discusses multi-path routing in general,
we will not describe it here.

To perform the first task of generating the DAG for
each destination node, a shortest path tree should first be
constructed. There are many link-state routing protocols that
can achieve this goal in a distributed manner, such as the
most widely used OSPF routing protocol. Because link-state
advertisements (LSAs) adopted by many link-state routing
algorithms already contain the topology information, each
node can easily obtain the topology of the network by ex-
changing LSAs without modifications. With sufficient link-
state information being released in the network, every node can
easily construct the entire network topology. Then, each node
computes a shortest path tree rooted in each destination node
and adds alternative links into the shortest path tree according
to our algorithm to finish the DAG generation process. After
D LoopFree, each node vi determines the corresponding next
hop set Si

j for each destination node vj .
We now discuss the implementation of the second stage,

i.e. to distribute the appropriate proportion of traffic among
the links. To better facilitate our description, we first provide
definitions of the upstream node and downstream node.
Given a certain destination node vt, we call node vi the
upstream node of node vj if j ∈ Si

t . Correspondingly, we call
node vj the downstream node of node vi. In each iteration,
when each node vi has received the marginal distances from all
its downstream nodes, the node computes its own marginal
distance and transmits this value to all its upstream nodes.
Due to the LSAs, the values of marginal distances can be
incorporated into an LSA. In particular, RFC3630 has defined
the Traffic Engineering Link State Advertisement (TE-LSA),
which records link load information. An iteration finishes
when all the nodes in the network have computed their
marginal distance. When this algorithm terminates, it will
output the optimal configuration of the φ-value.

When the optimal routing variable set φ is computed, it
remains unchanged in the static traffic scenario. Now we dis-
cuss the implementation of the data forwarding process under
our distributed routing scheme. The packet under HDEER
routing scheme is forwarded hop-by-hop from the source
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node to the destination node. The paths connecting each
source node and each destination node are constructed from
the corresponding neighbor sets derived from D LoopFree in
Section III-A. When the traffic splitting ratios over multiple
paths are computed (i.e. φ), packets can be forwarded among
these multiple paths accordingly.

2) Dynamic Traffic Scenario: In this scenario, as traffic
demands fluctuate over time, we should periodically modify
the optimal (φij)∗ accordingly. However, D Routing is unable
to react to dynamic traffic because the speed of convergence
to the optimal routes depends on a global constant. As stated
in Section III-C, a small γ guarantees the convergence of
D Routing but leads to slow convergence, while a large γ
may cause the algorithm not to converge.

To make traffic allocation process suitable for dynamic
traffic scenario, we present a technique for modifying the
routing variables in each node. With this technique, traffic
is incrementally moved from the links with large values of
Dk

j + wik to links with the least value as D Routing does.
Thus, a new algorithm, Algorithm 3, is developed to using
adaptive stepsize to modify the routing variables so that a
global constant is no linger necessary. The adaptive stepsize
ensures that the amount of traffic moved away from a link
is proportional to how large the value of Dk

j + wik of the
link is compared to the average value of Dk

j +wik among all
the adjacent nodes. For coherence, we refer the D Routing
adopted in static traffic scenarios as D Routing-S and refer this
heuristic in dynamic traffic scenarios as D Routing-D. Corre-
spondingly, we use D Routing-D(κ) to represent an iteration
in D Routing-D. D Routing-D(κ) is depicted in Algorithm
3, lines 12-23. This heuristic can quickly get a near optimal
solution. We use a constant value ! to control the iteration.
Specifically, D Routing-D terminates after only ! iterations.
It is different from the termination condition in D Routing-S,
where the number of iterations cannot be accurately estimated
before D Routing-S terminates. Note that the value of ! has
effect to the performance of D Routing-D, we will show this
relationship with experiments in Section V.

Now we address the issue of adapting our fast convergent
algorithm D Routing − D to the dynamic traffic scenarios.
We divide a certain length of time (L × △t) into L time
windows with a fixed length of△t. During each time windows
l ∈ L, the corresponding routing variables of each node will
remain constant. Here, △t is used as the time interval for
reconfiguration. Because frequent reconfiguration in realistic
networks is not practical, as it may produce overhead and
network failures, the configuration time length △t should
be set such that the reconfiguration will not be executed
frequently. Each node in the network monitors traffic of its
own, computing a new traffic record rij after every fixed time
interval △t. When a new window l+1 ∈ L starts, each node
drops the current traffic record rij(l) and modifies its routing
variable φij with the new traffic record rij . This process is also
shown in Algorithm 3, lines 1-28.

V. EVALUATION

This section provides the evaluation results of our distribut-
ed routing scheme on the widely used network simulator:

Algorithm 3 Routing in a Dynamic Traffic Scenario
1: Each node in the network continues monitoring and com-

puting rij during each △t.
2: for all l ∈ L do
3: for all vj ∈ V do
4: Notify each node along GEN G(j) to start a new

epoch l.
5: end for
6: for all vi ∈ V do
7: Update the value of rij(l) with the new traffic record

rij .
8: Run D LoopFree to find the next-hop set Si

j for each
sink node vj .

9: κ← 0.
10: while κ < ! do
11: κ← κ+ 1.
12: for all vj ∈ V do
13: kmin = argminvk∈Si

j
{Dk

j + wik}.
14: τ ← 1

|Si
j |
×
∑

vk∈Si
j
(Dk

j + wik).
15: for all vk ∈ Si

j ∧ k ̸= kmin do
16: if τ < (Dk

j + wik) then
17: (φijk)

κ ← (φijk)
κ−1 × τ

Dk
j +wik

.
18: else
19: (φijk)

κ ← (φijk)
κ−1.

20: end if
21: end for
22: (φijkmin

)κ ← 1−
∑

vk∈Si
j∧k ̸=kmin

(φijk)
κ.

23: end for
24: end while
25: (φij)

∗ ← (φijk)
κ.

26: Route traffic with the fixed (φij)
∗ in this epoch until

a new epoch is provided.
27: end for
28: end for

NS3− Simulator1. We focus this evaluation on four aspect-
s: (1) the tradeoff between energy consumption and traffic
delay in our bi-objective optimization, (2) the performance
of HDEER compared with the optimal solution of the bi-
objective problem and the solution of shortest path routing,
(3) the convergence property of HDEER with D Routing-S
and D Routing-D, and (4) the performance of HDEER under
dynamic real traffic traces.

A. Evaluation Settings

1) Environment: We perform our simulation on a laptop
with an Intel Core 2 Quad Core CPU Q8200 a⃝2.33GHz ×
4 with 8.0GiB of memory. The simulations are performed
using a discrete-event network simulator for Internet systems,
namely, NS3, which can capture the system’s behavior at the
packet level. The optimal solution of the bi-objective problem
used as a benchmark is obtained by LINGO.

1https://www.nsnam.org/.
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TABLE I
THE TEST NETWORK TOPOLOGIES

Network GÉANT AS1755 Sprint Random AT&T
Site Europe US US - US

Nodes 23 27 43 50 111
Links 74 92 174 188 290

2) Networks and Traffic: We test various types of topolo-
gies in this evaluation, including the topology of GÉANT
[20] in 2004 and three other topologies from an ISP topology
mapping engine, namely, Rocketfuel [21]. The three net-
works from Rocketfuel are AS1755, SPRINT and AT&T.
The above four topologies all originate from real networks
but vary in size. In addition to these real networks, we also
evaluate our algorithm on a random network whose degree
distribution follows a power law. Detailed information about
these test network topologies is listed in Table I. Note that we
assume that the network topology is fixed, with no link failure
in our evaluations.

We perform the evaluation under two different types of
traffic scenarios: static traffic scenario and dynamic traffic
scenario. In the static traffic scenario, the traffic demand
between each node and sink pair does not change. The traffic
model proposed by Nucci et al. [22] is assumed in the static
traffic scenario, where the 40% is high bit-rate traffic, between
1 Mbps and 80 Mbps, and the remaining 60 % is low bit-rate
traffic, up tp 1 Mbps. Both high and low bit rate traffic follow
a Lognormal distribution. In the dynamic traffic scenario,
the traffic demand between each node and sink pair varies
during the day. Bursty traffic in real networks always fluctuates
rapidly. To be more convincing, we test our algorithm with
real network traffic traces in GÉANT [20], which cover the
data for one week picked at random. The traffic matrices are
sampled on the network every 15 mins.

3) Energy and Delay: fik(xik) = x2
ik

CAik
is used as our

energy function as in [23]. Similar to most other routing
algorithms, dik(xik) =

xik
CAik−xik

is used as our delay function
as in [24]. Both energy and traffic delay functions are convex.

To evaluate the performance of our bi-objective optimal
routing scheme, we compare the evaluation results with the
optimal results, denoted by OPT. Using these network topolo-
gies, link capacities and the corresponding traffic matrices
according to the traffic generated in the NS3 simulator as
input, LINGO will output the corresponding optimal solution
to our bi-objective model within polynomial time. Due to the
absence of the traffic matrix information in real networks and
the tremendous computational time and memory costs needed
for computing, determining the optimal solution from a cen-
tralized optimization solver under a real traffic scenario is not
available. Although the optimal solution is often impossible
to obtain under real operating conditions in real networks, it
can serve as the lower bound for evaluating the performance
of HDEER.

In addition to the benchmarking of the optimal solution, we
also compare our distributed routing algorithm to a shortest
path routing algorithm, denoted by SPT, which is one of
the most widely applied routing algorithms in real-world
networks. In our evaluation, the “shortest path” refers to the
path with the minimum number of hops. We implement the

TABLE II
PERFORMANCE COMPARISON WITH DIFFERENT (w1, w2) PAIRS, EACH
VALUE IS AVERAGED AMONG 10 INDEPENDENT TESTS, FOLLOWED BY

THE CORRESPONDING STANDARD DEVIATIONS.

w1 w2 TS: Avg(SD) ES: Avg(SD) DR: Avg(SD)
1.00 0.00 32.2%(1.87%) 32.2%(1.87%) 1.022(0.0039)
0.75 0.25 22.8%(1.30%) 31.0%(1.54%) 1.020(0.0084)
0.50 0.50 15.1%(0.97%) 30.8%(1.23%) 1.006(0.0089)
0.25 0.75 7.3%(1.68%) 28.1%(3.21%) 0.996(0.0124)
0.00 1.00 0.7%(0.49%) 9.8%(2.20%) 0.993(0.0049)

TABLE III
PERFORMANCE COMPARISON WITH DIFFERENT TOPOLOGIES, EACH

VALUE IS AVERAGED AMONG 10 INDEPENDENT TESTS, FOLLOWED BY
THE CORRESPONDING STANDARD DEVIATIONS (w1 = 0.5, w2 = 0.5).

ES: Avg(SD) DR: Avg(SD)
OPT(%) HDEER(%) OPT(1) HDEER(1)

GEÁNT 19.5(4.05) 12.1(2.16) 0.96(0.036) 1.00(0.004)
AS1755 38.4(5.01) 37.9(1.56) 0.95(0.039) 1.01(0.007)
SPRINT 46.8(9.28) 32.1(5.72) 0.85(0.047) 1.04(0.012)

RANDOM 42.6(7.40) 30.8(4.72) 0.89(0.059) 1.02(0.009)
AT&T - 16.9(0.94) - 1.01(0.009)

shortest path routing algorithm using the Dijkstra algorithm,
which can also be performed in a distributed manner. Because
this routing algorithm picks routes for each flow with the
minimum number of hops, it can achieve a good traffic delay
performance.

B. Simulation Results

1) Pareto Optimal Points: We start by finding the Pareto
optimal points in this subsection. The test topology used in
this evaluation is from AS1755. As previously stated, a pair
(w1,w2) corresponds to a Pareto optimal point. We can get the
partial curve of the Pareto frontier, which consists of all the
Pareto optimal points, by gradually varying the values of w1

and w2. We use a static traffic scenario in this simulation. The
parameter θ is set to 5 × 10−5. We refer to the total cost of
the bi-objective optimization formulation (BOF) as T, refer to
the total energy consumption and total traffic delay as E and
D correspondingly. Table II illustrates the values of the total
cost savings, denoted by TS (TS = (1− THDEER

TSPT
)× 100%),

energy savings, denoted by ES (ES = (1− EHDEER
ESPT

)×100%)
and traffic delay ratio, denoted by DR (DR = DHDEER

DSPT
×

1). Noting that each result is averaged among 10 independent
tests, where the traffic matrices are generated with different
seeds. We set the repeat number as 10 because it is found
that the results are similar when the number is larger than 5.
The corresponding standard derivations are also provided. It
can be observed in the following:

i) A setting of (w1,w2) that increases the energy savings
will undermine traffic delay performance and vice versa. In
other words, there is a trade-off between energy savings and
traffic delay. When w1 = 0.75 and w2 = 0.25, HDEER can
reduce 31.0% energy consumption compared with SPT, which
is more than the energy savings achieved with w1 = 0.25 and
w2 = 0.75 (28.1%). However, the former incurs more delays
(1.020) than the latter (0.996) does. To apply our algorithm to
real networks, the pareto frontier can serve as a guideline for
choosing an optimal setting of (w1,w2).

ii) If only the single objective of reducing energy consump-
tion is considered, HDEER can achieve 32.2% energy savings
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TABLE IV
PERFORMANCE COMPARISON BETWEEN IGLPR AND HDEER, EACH VALUE IS AVERAGED AMONG 10 INDEPENDENT TESTS, FOLLOWED BY THE

CORRESPONDING STANDARD DEVIATIONS (w1 = 1, w2 = 0).

ES: Avg(SD) DR: Avg(SD)
GEÁNT AS1755 SPRINT Mean GEÁNT AS1755 SPRINT Mean

IGLPR 5.8%(2.60%) 31.4%(2.19%) 14.1%(4.71%) 17.1% 1.08(0.022) 1.10(0.015) 1.14(0.070) 1.11
HDEER 12.2%(1.83%) 31.6%(1.90%) 23.7%(5.95%) 22.5% 1.01(0.005) 1.02(0.017) 1.09(0.019) 1.04

TABLE V
COMPUTATION TIME OF ONE ITERATION OF HDEER, EACH VALUE IS AVERAGED AMONG 10 INDEPENDENT TESTS, FOLLOWED BY THE

CORRESPONDING STANDARD DEVIATIONS.

Topologies AS1755 GÉANT SPRINT RANDOM AT&T
Time: Avg(SD) 37.0µs(0µs) 43.5µs(0µs) 77.5µs(10.94µs) 146.7µs(9.43µs) 1021.2µs(18.71µs)

(a) D Routing-S (γ=50) (b) D Routing-S (γ=500) (c) D Routing-S (γ=5000) (d) D Routing-D

Fig. 5. The comparison among the convergence curves of D Routing-S with different values of γ and D Routing-D.

over SPT. This result demonstrates that HDEER performs well
for energy consumption reduction.

2) Performances in Static Traffic Scenarios: In this section,
we evaluate our distributed routing algorithm under the static
traffic scenario. We set both w1 and w2 to 0.5 and keep them
fixed. We compare the performance of HDEER with OPT and
SPT using five topologies listed in Table I in the following
(Note that these topologies represent small networks, medium-
sized networks and large networks.) The simulation results are
shown in Table III, which depicts the normalized performances
of the three algorithms in terms of total cost, energy consump-
tion and traffic delay, respectively. Each result is averaged
among 10 experiments along with the corresponding standard
deviation. From the results, note that:

i) HDEER can save a substantial amount of energy. It can
be seen from Table III that the energy consumed by HDEER
is close to that of the optimal solution solved by LINGO and
represents a significant reduction compared to SPT. Specifi-
cally, HDEER can obtain a 26.0% energy savings on average
compared with SPT using all the five test topologies.

ii) HDEER produces traffic delays that are within a small
percentage of the SPT. It can be seen that HDEER will only
produce slightly more traffic delay overhead in the network
compared to SPT, 1.6% on average.

iii) HDEER exhibits good scalability. It is worth noting
that when using a large topology, e.g., the topology of AT&T,
which contains 111 nodes and 290 links, as the input, even
LINGO fails to output the optimal solution due to a lack of
memory. Nevertheless, our distributed algorithm can still run
normally and converge after several iterations. This conclusion
is in line with the motivations of our distributed scheme.

We also compare the performance of HDEER with a cen-
tralized energy saving algorithm, namely the Iterative Greedy
Least-Power Routing algorithm (IGLPR), proposed by An-
tonakopoulos [23]. w1 is set to 1 in this simulation, thus
the optimization goal of HDEER is only energy conservation
in accordance with IGLPR. Simulation results showing in
Table IV indicate that HDEER performs better in energy con-

servation than IGLPR on average (IGLPR: 17.1%, HDEER:
22.5%). Noting that when using the AS1755 topology as the
test topology, the IGLPR achieves similar energy savings with
HDEER (IGLPR: 31.4%, HDEER: 31.6%), but it brings longer
delay than HDEER does (IGLPR: 1.11, HDEER: 1.04).

Finally, we measured the average computation time of one
iteration of our algorithm. As we can observe from Table V,
the computation time of one iteration of HDEER is at the
level of microseconds. As a result, HDEER is fast to react to
real-time traffic variations.

3) Convergence Properties: In this section, we investigate
the convergence behavior of HDEER with D Routing-S and
D Routing-D. We first study the convergence property of both
D Routing-S and D Routing-D by drawing four curves to
track the convergence processes. Then we compare the con-
vergence results of these two algorithms. The traffic scenario
used here is static traffic, which has been defined in Section
V-A(2). Here we use three traffic, namely Traffic-I, Traffic-II
and Traffic-III, generated with three different seeds to test the
performance. With the step size γ in D Routing-S set to 50,
500 and 5000, Figure 5(a), Figure 5(b), Figure 5(c) and Figure
5(d) demonstrate the results. Note the following:

i) When γ = 50, the energy saving curve in Figure 5(a)
decreases smoothly and slowly over time (approximately 60
iterations). Now we increase the value of γ. When γ = 500,
the curves in Figure 5(b) exhibit a faster convergence speed
for Traffic-I, but exhibit instability for Traffic-II and Traffic-III.
When γ = 5000, the curves in Figure 5(c) fail to converge.

ii) The energy saving curves in Figure 5(d) decrease fast
over time. It needs less than 7 iterations for each curve to
reach a similar result.

iii) D Routing-S outperforms D Routing-D in energy sav-
ing and traffic delay, but the performance gap between the two
algorithms is small (energy saving gap is 2.7% and delay gap
is 0.01%). In other words, D Routing-D is almost as efficient
as D Routing-S.

To ensure a smooth convergence process, γ should be
chosen carefully. Through a number of experimentations, we
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(a) (b)
Fig. 6. Performance comparison during time interval [5000,6750] with real traffic traces (! = 14). (a) Energy consumption. (b) Delay.

TABLE VI
PERFORMANCE COMPARISON WITH DIFFERENT VALUE OF ! DURING A RANDOMLY CHOSEN WEEK WITH REAL TRAFFIC TRACES.

Day-1 Day-2 Day-3 Day-4 Day-5 Day-6 Day-7 Mean Standard Deviation
ES-6 (%) 12.26 12.92 12.28 18.80 23.36 17.81 15.84 16.18 4.13
ES-10 (%) 13.82 14.81 14.20 20.48 24.88 19.06 17.64 17.84 4.01
ES-14 (%) 14.43 15.24 14.35 21.04 25.38 20.13 18.21 18.40 4.10
DR-6 (1) 1.077 1.066 1.063 1.059 1.062 1.074 1.091 1.070 0.0112

DR-10 (1) 1.070 1.058 1.053 1.051 1.052 1.063 1.081 1.061 0.0111
DR-14 (1) 1.066 1.054 1.048 1.048 1.049 1.060 1.078 1.058 0.0113

Fig. 7. Performance comparison (! = 6, ! = 10, ! = 14 and SPT )
during a randomly chosen week with real traffic traces.

found that a proper value of γ can be 50, whereby the
corresponding convergence time is long (see Figure 5(c)).
According to our simulation, when γ is set larger than 500,
the algorithm fails to converge for some traffic. A simple and
effective way of determining such a γ is choosing values on the
same order of magnitude as (Dk

j +wik) by experiments. How-
ever, it is hard to apply this in dynamic traffic scenarios during
real-world operation. D Routing-D naturally overcomes this
issue and converges fast.

4) Performance in Dynamic Traffic Scenarios: In this sec-
tion, we evaluate our distributed routing algorithm in real
dynamic traffic scenario. We conduct our simulations using
the topology of GÉANT and a set of real traffic traces [20].
Since it is impossible to get optimal solutions via a centralized
solver in real traffic scenario, we no longer use OPT as a
benchmark in this section. Instead, we set ! to 6, 10 and 14
to study the effect of different values of !. The simulation
results are shown in Figure 6(a), Figure 6(b), Figure 7 and
Table VI. Note that:

i) Figure 6(a) illustrates that HDEER performs well in en-
ergy saving. Figure 6(b) shows that the traffic delay overheads
introduced by HDEER is limited. A longer time (a seven-day
sample interval) performance results are depicted in Figure 7.

ii) HDEER always reduces sufficient energy consumption
while it introduces delays that are within a small percentage
of the shortest path routing algorithm. During these sampled
7 days, the average energy saving ratio of HDEER is 17.47%,
and the average traffic delay ratio is 1.063.

iii) Table VI demonstrates that the value of ! will affect
the performance of HDEER. A larger value of ! performs
better than a smaller value of ! under the same network
setting (the average performance in 7 days: ES-6(16.18%), ES-
10(17.84%), ES-14(18.40%) and DR-6(1.703), DR-10(1.061),
DR-14(1.058).

VI. RELATED WORK

In this section, we summarize some related works on the
energy saving problem at the network-wide level in general
wired networks. There is a substantial amount of literature that
focuses on this issue, which can be generally classified into
two categories: centralized solutions and distributed solutions.
Recently, some papers have provided thorough reviews on this
topic [2], [25], [26], [27]. Here, we only discuss the methods
that are closely related to our scheme.

A. Centralized Approaches
The pioneering work performed by Gupta et al. [5] indicated

the importance of saving energy from a network protocol point
of view. They modified the current Internet protocols to enable
some network devices to operate in sleep mode, thus saving
energy. In their follow-up studies [28], [29], they proposed
various approaches to detect the idle periods of Ethernet
interfaces in networks and developed algorithms to decide the
interface state transformation between idle and active states.
Gunaratne et al. [3] also noted the low utilization of network
resources and suggested the reduction of the data transmission
rate of Ethernet links when possible, thus saving energy over
entire networks. Both of these ideas have been adopted by the
Ethernet industry [3], [30], [31], which results in two basic
energy saving mechanisms: speed scaling and power down.
Nedevschi et al. [32] explored both speed scaling and power
down as techniques for saving energy at the network level and
conducted intensive simulations to evaluate the performance
of these two techniques to prove their effectiveness. Andrews
et al. [33], [12] addressed the energy efficiency problem
by proposing routing and scheduling algorithms based on
these two mechanisms. ESIR, proposed by Cianfrani et al.
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[34], reduces the active links in IP networks by allowing
neighboring nodes to share shortest path trees, thus reducing
the energy consumption of the network. Fisher et al. [35]
exploited the fact that many links in core networks are actually
“bundles” of multiple physical cables and line cards that can
be shut down independently to put as many links as possible
to sleep, thus saving energy. [36] proposed by Chiaraviglio
et al. focuses on shutting down entire routers. There is a
set of other works [37], [38], [39], [40], [41], [42] with
various considerations. Different with the above works that
only consider power conservation, some works [43], [44]
take both energy conservation and network performance into
account. Sansò et al. [43] were the first to raise awareness on
the relationship between Internet power consumption, network
performance and reliability planning by exploring the trade-
off between energy consumption and network performance
based on data collected from Internet sources. Zhao el al.
in [44] studied the tradeoff between load balance and energy
efficiency.

B. Distributed Routing Schemes

To avoid the limitations of the centralized schemes, re-
searchers have proposed distributed schemes. GDRP-PS, pro-
posed by Ho et al. [45], is a new architecture that can
coordinate various possible routers to enter sleep mode, thus
saving energy over the entire network. Vasic et al. [46]
addressed the energy efficiency problem from a traffic engi-
neering perspective. They proposed EATe, a traffic engineering
technique in which flows are assumed to be splittable, and
energy can be saved by properly splitting the flows to the
links. In their follow-up study [47], they proposed another
traffic engineering technique: REsPoNse. In the [47], they first
computed a series of paths that are sensitive to the energy
consumption according to historic traffic information; then,
they used a smart online traffic engineering algorithm for
the flow path selection. Shen et al. [48] also used a traffic
engineering technique. An important difference from the above
mentioned distributed schemes is that they take the network
performance (maximum link utilization) into consideration
in addition to energy consumption. Other researchers have
focused on network protocols and routing algorithms. Kim
et al. [49] formulated the energy consumption minimized
network problem as an integer linear programming and ex-
ploited the ant colony optimization (ACO) method to solve
the problem. Bianzino et al. [50] proposed a reinforcement
learning technology for nodes to make local energy saving
decisions according to the historic and current loads of links.
In their later study [51], they used heuristics to turn off
links in a distributed manner instead of adopting a learning
technique that needs complicated parameter settings. Si et
al. [52] proposed an energy saving scheme for data centers
using power-down mechanism. Coiro et al. [53] focused on
leveraging the characteristics of MPLS networks to reduce
the energy consumption of entire networks using power-down
technique. They proposed DAISIES to adjust the capacity
reserved by each Label Switch Path (LSP) according to
variations in traffic. These works addressed the problems faced

by centralized solutions and performed well in terms of energy
conservation. However, there is not a distributed scheme that
takes into consideration both energy conservation and delay
while using speed-scaling energy saving mechanism. In this
article, HDEER is developed based on our previous work
[54], which uses speed scaling mechanism to reduce network
energy consumption from a routing perspective. However, [54]
has limitations of long convergence time and routing insta-
bility. HDEER in this paper saves energy while considering
the message delay at the same time by using speed-scaling
mechanism, and is of shorter convergence time and routing
stability.

VII. CONCLUSIONS

In this paper, we address the problem of achieving ener-
gy efficiency in wired networks from a routing perspective.
Unlike most existing green networking solutions, we aim at
reducing energy consumption over entire networks with traffic
delay considered. We model this problem and provide a bi-
objective optimization formulation for it. Through theoretical
analysis, we identify the necessary and sufficient conditions for
achieving a global optimal solution. Based on the observed
conditions, we propose a fully distributed routing scheme
that can provide near global optimal solutions. The proposed
scheme consists of two stages. First, we generate DAGs for
each destination node to ensure loop-freeness of the routing
paths. Then, we develop algorithms to allocate traffic in the
DAGs under static and dynamic scenarios to save energy.
Extensive simulations based on both real network topologies
and a generated topology with power law show that the
proposed routing scheme can obtain significant energy saving
while bringing negligible traffic delay overheads compared to
shortest path routing.
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